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Abstract

The loss of unimproved grassland has led to species decline in a wide range of taxonomic

groups. Agricultural intensification has resulted in fragmented patches of remnant grassland

habitat both across Europe and internationally. The monitoring of remnant patches of this

habitat is critically important, however, traditional surveying of large, remote landscapes is a

notoriously costly and difficult task. The emergence of small-Unmanned Aircraft Systems

(sUAS) equipped with low-cost multi-spectral cameras offer an alternative to traditional

grassland survey methods, and have the potential to progress and innovate the monitoring

and future conservation of this habitat globally. The aim of this article is to investigate the

potential of sUAS for rapid detection of threatened unimproved grassland and to test the use

of an Enhanced Normalized Difference Vegetation Index (ENDVI). A sUAS aerial survey is

undertaken at a site nationally recognised as an important location for fragmented unim-

proved mesotrophic grassland, within the south east of England, UK. A multispectral camera

is used to capture imagery in the visible and near-infrared spectrums, and the ENDVI calcu-

lated and its discrimination performance compared to a range of more traditional vegetation

indices. In order to validate the results of analysis, ground quadrat surveys were carried out

to determine the grassland communities present. Quadrat surveys identified three commu-

nity types within the site; unimproved grassland, improved grassland and rush pasture. All

six vegetation indices tested were able to distinguish between the broad habitat types of

grassland and rush pasture; whilst only three could differentiate vegetation at a community

level. The Enhanced Normalized Difference Vegetation Index (ENDVI) was the most effec-

tive index when differentiating grasslands at the community level. The mechanisms behind

the improved performance of the ENDVI are discussed and recommendations are made for

areas of future research and study.
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1. Introduction

The recent emergence and availability of small-Unmanned Aircraft Systems (sUAS) presents

new possibilities for landscape scale ecological assessment. This rapidly developing field has

been shown, in some cases, to be more effective than more traditional remote sensing methods

in meeting the requirements of researchers seeking fast, adaptable and successful monitoring

of management initiatives and approaches [1–2]. High costs, low resolution, and the lack of

flexibility often associated with satellites and piloted aircraft have limited their widespread

application [3]. Thus, sUAS present new approaches to aerial research and remote sensing as

they are lightweight, relatively low-cost, and capable of carrying a developing range of sensors

and imaging equipment [4].

The repeatable and cost-effective nature of sUAS methods means that these systems can be

adapted to operate at a range of appropriate spatial and temporal scales. Furthermore, the rep-

licable nature of sUAS surveys facilitates assessment of rapid temporal changes in land cover

and habitats [4], and potentially for seasonal changes to be recorded and monitored. The

development of improved sensors and innovations in spectral indices (e.g. narrow band, red-

edge) is furthering their application and offering the opportunity to discern landscape differ-

ences at smaller resolutions and finer spatial and temporal scales [5–7].

Unmanned aircraft systems have found application in a broad range of environmental

research fields. Examples include large mammal population surveys [8–9], the monitoring of

breeding bird colonies [10] and precision agriculture [11–14]. However, sUAS also have the

potential to transform the way in which semi-natural vegetation surveys are conducted [7, 15–

16]. The ability of this technology to fly at low altitudes and be equipped with appropriate sen-

sors enables the detection of species assemblages [7] and spatial variations in plant community

structure to be observed [16].

One area in which sUAS may be of particular use is the surveying of, amongst others,

semi-natural and unimproved grassland habitats. The widespread loss and degradation of

unimproved grassland worldwide, particularly across Europe, means that these habitats are

of increasing conservation concern [17–20]. Locating and monitoring remnant patches of

this habitat is critically important to ensure that they are afforded protection and not lost

completely [21–23]. However, traditional surveying of large, remote landscapes is a notori-

ously difficult task. In addition to time costs associated with large areas and the need

for repeat surveys [24], further issues relating to site access mean that surveying is challeng-

ing and potentially costly [25]. The development of a semi-automated method has the

potential to significantly change the way in which internationally important semi-natural

grasslands are surveyed and monitored. The development of a rapid sUAS methodological

approach, along with the use of well-understood vegetation indices, could facilitate wide-

spread assessment of temporal changes, habitat loss, and the effectiveness of management

initiatives [4].

This paper presents a novel approach for rapid surveying of semi-natural grassland systems

using a low cost sUAS. A semi-automated method of detecting unimproved grassland habitat

at the community level is presented, and the effectiveness of an Enhanced Normalised Vegeta-

tion Difference Index compared to a range of traditional vegetation indices.

The research objectives were to: 1) acquire aerial imagery of the study site in both stan-

dard visible (RGB) and near-infrared (NIR) spectrums using a sUAS; 2) Undertake quadrat

surveys of vegetation communities present at the study site in order to ground-truth accu-

racy and effectiveness of a sUAS approach; 3) Calculate and compare the effectiveness of a

range of vegetation indices to differentiate between improved and unimproved grassland

communities.
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2. Vegetation indices

Vegetated habitats can be remotely sensed through the calculation of vegetation indices from

satellite or aerial imagery. First developed by Rouse et al. [26] in 1974, The Normalized Differ-

ence Vegetation Index (NDVI) is the most prominently used of vegetation indices [27–32].

NDVI is largely used to detect live vegetation by measuring the reflectance levels of visible red

and near-infrared light [30]. The NDVI is based on the principle that healthy vegetation

absorbs a large proportion of the visible light that reaches it whilst reflecting most of the radia-

tion in the near-infrared region [30]. Plant cells have evolved to reflect radiation in the near-

infrared spectrum (700–1400 nm) as the larger wavelengths found in this region do not create

sufficient photon energy to produce organic molecules [33]. NDVI has been used in a broad

range of applications including the estimation of crop yield [29, 32], measuring deforestation

rates [28], and following drought [31]. NDVI has also been used within ecological research to

identify the extent of natural habitats and examine spatial and temporal changes [27].

Since the first research using NDVI, a number of alternative vegetation indices have been

developed. The majority of these are adapted from NDVI and combine two or more spectral

bands. A series of those deemed important to vegetation studies are shown in Table 1. Follow-

ing the initial use of the red band to calculate NDVI, attention has moved towards the applica-

tion of the green and blue wavelengths. In a study of tree canopy variation, Gitelson et al. [34]

showed that the green band displayed a greater sensitivity to chlorophyll concentrations than

the red channel. The report also demonstrated that the use of green wavelengths resulted in

more accurate measurements of pigment concentrations and led to the development of the

Green Normalized Difference Vegetation Index (GNDVI) [34].

The Difference Vegetation Index (DVI), first developed by Tucker [35] in 1979, is calcu-

lated by subtracting reflectance from the red channel by that in the NIR [35]. Sripada et al. [36]

modified the DVI by substituting the red band for the green to form the Green Difference Veg-

etation Index (GDVI). The GDVI was utilised to determine in-season nitrogen requirements

for corn crops. Another vegetation index developed by Sripada et al. [36] is the Green Ratio

Vegetation Index (GRVI), which was modified from an original Ratio Vegetation Index (RVI)

established by Birth and McVey [37] in 1968. Utilisation of the green band means that the

GRVI is less sensitive to variations in ground cover as vegetation has a higher level of reflec-

tance for green wavelengths [36].

The red channel is also substituted for the green band in the GIPVI, a variation of the Infra-

red Percentage Vegetation Index (IPVI) developed by Crippen [38] in 1990. Calculated by

Table 1. Examples of vegetation indices developed for remote sensing applications.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index

(NDVI)

(NIR—R) / (NIR + R) Rouse et al., 1974

[26]

Green Difference Vegetation Index (GDVI) NIR—G Sripada et al. 2006

[36]

Green Normalized Difference Vegetation Index

(GNDVI)

(NIR—G)/(NIR + G) Gitelson et al. 1996

[34]

Enhanced Normalized Difference Vegetation

Index (ENDVI)

((NIR + Green)—(2*Blue) / ((NIR +

Green) + 2*Blue))

Maxmax, 2015 [39]

Green Infrared Percentage Vegetation Index

(GIPVI)

NIR / (NIR + Green) Crippen, 1990 [38]

Green Ratio Vegetation Index (GRVI) NIR / Green Sripada et al. 2006

[36]

https://doi.org/10.1371/journal.pone.0186193.t001
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dividing the NIR band by the sum of the NIR red bands combined, the IPVI measures the per-

centage of NIR radiance relative to the combined radiance of both bands [38].

The Enhanced Normalized Difference Vegetation Index (ENDVI) developed by LDP LLC,

Carlstadt, NJ, USA [39] incorporates three spectral bands (NIR, B, and G) to produce better

discrimination within the index in comparison to the original NDVI. By using both the NIR

and green channels, the index inflates the chlorophyll reflection values by summing both NIR

reflectance and green channel reflectance [39]. Furthermore, the inclusion of the blue channel

in the index has the potential to amplify the recorded chlorophyll absorption values due to the

increased amplitude of absorption of blue wavelength energy, particularly chlorophyll-b, in

this part of the electromagnetic spectrum. The ENDVI has recently found application within

agricultural monitoring [13–14], measuring peatland disturbance [40] and orchard manage-

ment [12].

With the recent emergence of sUAS, there is an opportunity to advance upon the applica-

tion and conceptualisation of indices traditionally calculated using imagery obtained from sat-

ellites and manned aircraft. SUAS present a platform for new possibilities for rapid and

adaptive spectral analysis of vegetation.

3. Methods

3.1 Study site

The study was undertaken within the High Weald Area of Outstanding Natural Beauty

(AONB). The High Weald is located in south east England (East Sussex, West Sussex, Kent

and Surrey) and was recognised nationally as an AONB in 1983. The landscape covers an area

of 1461 km2 (Fig 1), and exists as a mosaic of different habitats including woodland, hedge-

rows, heathland, scattered farmsteads and grassland [41]. There are approximately 305, heavily

fragmented, unimproved grassland sites scattered across the AONB representing a total area

of 6.6 km2. Many of these are small in size, with the largest being only 0.3 km2 [25].

The survey location was Upper Spoods Farm in Hadlow Down (NGR TQ538234; 85 m

ASL, Fig 1), in an open farmland/forested area. High Weald AONB Authority and the land-

owners of Upper Spoods Farm provided site permission. The total survey site covered an area

of 4,164m2 and was comprised of three grassland fields (fields A, B, and C) separated by mixed

species hedgerows (Fig 2). An area of deciduous woodland bordered the site to the north and

east whilst the remaining area adjacent to the site was either continuation of grassland habitats,

or farmland intersected by hedgerows. The area had previously been identified as a potential

survey site by the High Weald AONB unit, due to the presence of nationally important unim-

proved mesotrophic grassland communities.

The eastern field (C) was predominantly improved MG6b (Lolium perenne-Cynosurus cris-
tatus) communities whilst the central (B) and western field (A) consisted of unimproved

MG5c (Cynosurus cristatus-Centaurea nigra) communities. Discernible patches of M23 (Juncus
effusus/acutiflorus-Galium palustre) rush pasture also existed in fields A and B, lying close to

the small brook that dissects the site. As the site was bounded by dense woodland, it was also

ideal for testing the adaptive and nimble nature of sUAS approaches for landscape assessment.

Furthermore, the range of habitat types present within a small area made the site suitable as it

allowed assessment of the effectiveness of a multispectral sensor to distinguish between the

habitats and communities present at the small scale.

3.2 Vegetation quadrat surveys

Vegetation quadrat surveys were undertaken over two days during July 2016. Species presence

within 1m2 quadrats were recorded and assigned a Domin scale value of percentage cover. The
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results of the quadrat surveys were then used to assign each of the three fields in a hierarchical

manner to a National Vegetation Classification (NVC) community type [42]. A total of

twenty-nine quadrats were randomly sampled across the study site and represented all pre-

dominant grassland habitat types present. GPS locations were recorded for quadrats that were

orientated northwards. Quadrats were surveyed in a consistent manner and both presence/

absence and percentage cover were recorded. One-way ANOVA (analysis of variance) tests

were performed (Minitab v.17) in order to determine the existence of significant differences

between mean species numbers and habitat composition. Following ANOVA, post-hoc analy-

sis using Tukey’s HSD (Honest Significant Difference) test identified significant differences

between pairs of habitat types.

3.3 Image acquisition

Aerial imagery was acquired using a DJI Inspire 1 sUAS. The sUAS was set to a target altitude

of 25m above ground level (AGL) and was flown at 5 meter line spacing in consistent weather

conditions (temperature:18˚C, wind speed: 3.6ms-1 NW, sun with minor cloud cover). Follow-

ing an initial test flight, aerial images were acquired during four separate flights over an hour-

long period. These followed a crosshatched flight plan to ensure maximum overlap (>80%)

and complete coverage of the site. Images were captured using both a standard RGB 12 mega-

pixel DJI Zenmuse X3 camera (DJI, Europe) and a modified BG-NIR version of this sensor.

The modified camera contained a custom filter that passes infrared light from the ‘red edge’ at

Fig 1. The location of the study site within the High Weald AONB in south east England. Reprinted from Ordnance Survey

(Digimap Licence) under a CC BY license, with permission from Crown Copyright and Database Right [2017].

https://doi.org/10.1371/journal.pone.0186193.g001
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680-800nm where plants actively reflect wavelengths. By blocking wavelengths over 800nm,

the filter ensures that the blue and green channels only receive visible light whilst allowing the

detection of NIR light at 680-800nm (LDP LLC, Carlstadt, NJ, USA).

A total of eighteen ground control points (GCPs) were used during the aerial field survey.

The GCPs were surveyed using a Leica GPS1200 differential global positioning system (dGPS)

and were post-processed using Leica Geo Office. The raw GPS data collected using the dGPS

required post processing using RINEX (Receiver Independent Exchange Format) data. The

sUAS was set to acquire images at timed intervals every 5 seconds with 356 images captured.

All images acquired during the field survey were recorded in a JPEG file format and georefer-

enced to EXIF GPS coordinates and altitude level obtained from the DJI Inspire 1 sUAS.

3.4 Image processing and analysis

Of the original 356 images captured, 351 were selected for processing using the Agisoft Photo-

scan v1.2.5 (build 2735) software product. An estimate of image quality was used to assess the

suitability of images for their inclusion in processing. Images were downscaled and then com-

pared to the originals, giving each image a value based on sharpness. Images with a value

greater than 0.70 were included in image processing. Orthorectified images of the study site

were produced from both the visible spectrum and NIR imagery. A Structure-from-Motion

Fig 2. Near Infra-Red (NIR) aerial image of study site target analysis area located at Upper Spoods Farm, Hadlow Down,

East Sussex. Fields A and B = MG5c unimproved grassland, field C = MG6b improved grassland. The white line represents the

small brook that runs along the hedgerow separating fields A and B.

https://doi.org/10.1371/journal.pone.0186193.g002
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(SfM) Digital Surface Model (DSM) was created for ortho-rectification purposes [43]. Image

processing followed the standard Agisoft procedure [44].

Nine of the eighteen coded Ground Control points (GCPs) were used to optimise camera

position and orientation. A dense point cloud was produced from the estimated camera loca-

tions, and aggressive depth filtering used to remove outliers. The generated DSM was then

used to produce orthorectified images for the study site.

Additional image analysis was undertaken using ArcMap v10.3.1 (ESRI, 2015). Orthorecti-

fied imagery was separated into four layers based on spectral bands (red, green, blue, NIR).

Images were clipped to the study site boundary and hedgerows dividing each field were

removed, allowing greater zonation within the grassland fields. Vegetation indices (Table 1)

were calculated to test for differences in the target fields. By determining the average index val-

ues for quadrat locations within the target fields, a spectral signature file was generated for

future application. A total of six vegetation indices were calculated (Table 1).

Extraction method was used to determine mean index values for all six indices in each of

the quadrats. Statistical analysis was undertaken to determine existence of significant differ-

ences between habitat and community types within each field. One-way ANOVA tests with

post-hoc Tukey comparisons were performed. Where normality assumptions were not met,

Kruskal-Wallis tests were undertaken. Differences between broad habitats (e.g. rush and grass-

land) were initially examined, with findings subsequently used to analyse differences between

NVC communities and sub-communities.

Finally, for independent assessment of the sUAS image accuracy, the remaining nine GCPs

were recorded by dGPS and compared to the marked locations on the orthophotos. Root

Mean Square Error (RMSE) and Mean Absolute Error (MAE) were calculated to estimate dif-

ferences between image-based control points and independent dGPS data.

4. Results

4.1 Image processing output

The dense point cloud produced from the imagery was comprised of 11,406,037 matched

points. The effective overlap of photographs was less than nine images per point within the

study site. The DSM had a reported resolution of 0.0384m per pixel, and the resolution of the

orthorectified image was 0.0096m per pixel. Photoscan (Agisoft, 2016) reported total RMSE

values of 0.0382m for the orthophoto.

4.2 Model accuracy

Independent accuracy assessment of the orthomosaic and DSM output was conducted. Inde-

pendent ground control points, obtained using a Leica dGPS, were compared to concurrent

locations on the orthomosaic image and DSM. RMSE and MAE values for the nine indepen-

dent ground control points showed that the positional accuracy of the orthomosaic was

between 0.048m RMSE (x-axis) and 0.054m RMSE (y-axis), and elevational accuracy of the

model was 0.335m RMSE (z-axis) (Table 2).

4.3 Vegetation survey results

Forty-one plant species were identified within the study site and this information was used to

assign each of the three fields the following NVC classifications:

• MG5c: (Cynosurus cristatus-Centaurea nigra grassland, Danthonia decumbens subcommu-

nity): Fields A and B.
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• MG6b: (Lolium perenne-Cynosurus cristatus grassland): Field C.

• M23: (Juncus effusus/acutiflorus—Galium palustre rush pasture): Individual rush patches in

fields A and B.

Fig 3 shows the average number of total species, as well as species by group, for each field/

habitat type.

The quadrat surveys showed that unimproved grassland (MG5c) was found to have a higher

mean total number of plant species (14.3 and 15.3) than improved grassland (9.0). The total

number of species within the two rush patches (M23) was also higher, with an average of 14.5

species per quadrat. Improved grassland also had a lower mean number of wildflower species

(4.2) compared to the two unimproved fields (9.8 and 11.0). In contrast, grass species were less

Table 2. Comparison of combined XYZ coordinates between DSM and independent dGPS ground

control points with Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values.

Difference from dGPS points (m)

Control Pt x axis y axis z axis

1 -0.049 0.021 0.079

2 -0.014 0.006 0.196

3 -0.017 -0.022 0.047

4 0.002 -0.009 0.239

5 -0.018 0.035 0.287

6 0.028 -0.062 0.119

7 0.129 -0.114 -0.867

8 0.001 -0.047 -0.234

9 -0.009 -0.070 0.067

RMSE (all pts) 0.048 0.054 0.335

MAE (all pts) 0.030 0.043 0.237

https://doi.org/10.1371/journal.pone.0186193.t002

Fig 3. Mean number of total species and species by group for quadrats within each field/habitat type.

https://doi.org/10.1371/journal.pone.0186193.g003
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abundant within unimproved fields (3.3 and 3.8) than improved grassland (4.8). The two rush

patches had the highest mean number of rush and sedge species (2.0) in comparison to unim-

proved grassland (0.9 and 0.4) and the improved field in which they were absent. Finally, a

small number of tree saplings were found in fields A and B at the western edge of the study site

and were a result of encroachment from the adjacent woodland.

The results of one-way ANOVA tests (Table 3) showed that four of the five species groups

differed significantly between habitat types at the 95% confidence level. The average number

of tree species was the only group that did not vary between habitats due to a lack of tree speci-

mens (F = 0.86, P = 0.4358).

Post-hoc comparisons using the Tukey HSD test revealed that improved grassland

(MG6b) contained a significantly lower mean number of total species than unimproved

grassland (MG5c) (P = 0.0010) with the latter possessing the higher values. Rush pasture

(M23) was found to have a significantly different number of total species in comparison

to improved grassland (P = 0.0478) with the former possessing the higher values, but

no significant difference was observed between rush and unimproved grassland

(P = 0.9000).

Comparisons for the mean number of grass species identified differences between

two groups. Quadrats within the improved grassland were found to have a significantly dif-

ferent number of grasses than those in unimproved grassland (P = 0.0024) and the rush

patches (P = 0.0031) with the improved grassland consistently showing the higher values.

For wildflower species, improved grassland was found to have a significantly different num-

ber of species than both unimproved grassland (P = 0.0010) and rush patches (P = 0.0046)

with the improved grassland consistently showing the lower values on this occasion. Rush

patches were found to have a significantly different number of rush and sedge species in

comparison to improved grassland (P = 0.0115), but not for unimproved grassland

(P = 0.0887).

Table 3. One-way ANOVA results for species groups and Tukey HSD post-hoc comparisons.

ANOVA Tukey test for difference of means

Comparison groups Mean difference Post-hoc P-value

Total species F = 13.25.0001* MG5c-MG6b -4.83 0.0010*

P = 0.0001* MG5c-Rush 0.67 0.9000

MG6b-Rush 5.50 0.0478*

Grass species F = 10.205* MG5c-MG6b 1.22 0.0024*

P = 0.0005* MG5c-Rush -1.06 0.1968

MG6b-Rush -2.28 0.0031*

Wildflower species F = 26.19 MG5c-MG6b -6.17 0.0010*

P = <0.0001* MG5c-Rush -0.39 0.9000

MG6b-Rush 5.78 0.0046*

Rush and sedge species F = 5.43 MG5c-MG6b -0.67 0.1529

P = 0.0107* MG5c-Rush 1.33 0.0887

MG6b-Rush 2.00 0.0115*

Tree (saplings) species F = 0.86 - - -

P = 0.4358 - - -

Note:

* indicates a statistically significant difference with p< 0.05.

https://doi.org/10.1371/journal.pone.0186193.t003
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4.4 Vegetation indices

The boxplots displayed in Fig 4 show the vegetation indices calculated from the sUAS captured

imagery at the habitat level (grassland vs rush habitat). ANOVA and Kruskal-Wallis tests iden-

tified significant differences between the two main habitat types for all indices. Additionally,

the mean index value of the rush habitat was visibly higher than that of grassland in all six

cases.

Following habitat level analysis, boxplots were calculated at the community level (Fig 5) to

identify differences in the vegetation indices values between the three NVC categories present

within the site (MG5c and MG6b grassland, M23 rush pasture). Again, the mean index value

of the rush habitat was visibly higher than that of grassland in all cases and significant differ-

ences between the groups were detected to at least the 93% confidence level for all examples.

The boxplots displayed in Fig 5 show the vegetation indices calculated at the community

level (MG5a, MG6b, and M23). Significant differences above the 95% confidence level between

community types were identified in only three of the six indices (NDVI: F = 11.65, P< 0.001,

GDVI: F = 7.33, P = 0.003, and ENDVI: F = 10.70, P< 0.001). Post-hoc Tukey comparisons

showed that all three indices were able to display a significantly different mean index

value between (at least one of) the grassland and rush pasture communities. Both ENDVI

(p = 0.012) and GDVI (p = 0.035) also showed a significant difference between unimproved

(MG5c) and improved (MG6b) grassland communities, but the latter was unable to discern

significant differences between improved (MG6b) and rush-pasture (M23), indicating that

GDVI may not be suitable for this purpose.

Fig 4. Mean vegetation index values for 1m2 quadrats within grassland and rush habitats.

A = Normalized Difference Vegetation Index (NDVI), B = Green Difference Vegetation Index (GDVI),

C = Green Normalized Difference Vegetation Index (GNDVI), D = Enhanced Normalized Difference

Vegetation Index (ENDVI), E = Green Infrared Percentage Vegetation Index (GIPVI), F = Green Ratio

Vegetation Index (GRVI).

https://doi.org/10.1371/journal.pone.0186193.g004
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Statistical analysis determined that ENDVI was the most effective in representing and iden-

tifying the differences between all NVC community types studied at the quadrat level. ENDVI

was the only index capable of showing significant difference in spectral response data across all

NVC community combinations (MG5c unimproved grassland, MG6b improved grassland,

and M23 pasture-rush).

5. Discussion

5.1 DSM and orthophoto accuracy

The assessment of GCP locations found that the positional error for the nine independent con-

trol points was small (0.048–0.054m), and suggested that the DSM and orthophoto outputs

were a strong representation of positional field measurements. The elevation error was larger

(0.335m) than positional values, but can be explained by the structure of the grassland vegeta-

tion within the site. During quadrat surveys, the mean vegetation height was measured at

0.208m. This factor is likely to have resulted in the vertical difference observed between sUAS-

derived DSM elevation values and those obtained using the dGPS at ground level. These find-

ings are similar to those observed by Tonkin et al. [45] in two contrasting mountainous areas.

In their study, the value for a less densely vegetated area (0.200m) was found to be significantly

lower than for an area of high vegetation cover (0.588m), corresponding to the vertical differ-

ence observed during this study [45].

Fig 5. Mean vegetation index values for 1m2 quadrats within each of the community types.

MG5c = Unimproved grassland, MG6b = Improved grassland. A = Normalized Difference Vegetation Index

(NDVI), B = Green Difference Vegetation Index (GDVI), C = Green Normalized Difference Vegetation Index

(GNDVI), D = Enhanced Normalized Difference Vegetation Index (ENDVI), E = Green Infrared Percentage

Vegetation Index (GIPVI), F = Green Ratio Vegetation Index (GRVI). * represent significant differences at

<0.05 significance between habitat types detected using Tukey post-hoc analysis.

https://doi.org/10.1371/journal.pone.0186193.g005
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5.2 Vegetation indices

Initial vegetation quadrat surveys identified two clear habitat types within the study site; meso-

trophic grassland (MG) and rush pasture (M). Further analysis at the community level found

fields A and B to be comprised of unimproved MG5c (Cynosurus cristatus-Centaurea nigra)

grassland whilst field C contained improved MG6b (Lolium perenne-Cynosurus cristatus) habi-

tat. Scattered patches of distinctive rush pasture (M23) were evident in fields A and B. By

determining the species assemblages present at the study site, and recording sample quadrat

locations, vegetation indices were calculated from aerial imagery to determine if these differ-

ences were discernible remotely.

All six of the vegetation indices recorded from a sUAS, using a multispectral camera, were

able to distinguish between MG mesotrophic grassland and M23 rush pasture at the habitat

level. The mean index values for rush pasture were higher than that of grassland in all cases

(Fig 4). Index values showed that rush patches presented comparatively lower NIR+green

reflectance values and lower reflectance of the blue wavelength energy. Conversely, grassland

areas presented higher values of NIR+green reflectance, but lower reflectance of the blue wave-

length energy. Vegetation surveys of the rush patch quadrats revealed that, as would be

expected, this habitat type had the highest mean number of rush and sedge species present

(2.0). The rush patches were also characterised by having the lowest mean number of grass spe-

cies (2.5) of the three habitat types. Results of the quadrat surveys showed that these patches

were dominated by sharp-flowered rush (Juncus acutiflorus), and to a lesser extent, compact

rush (Juncus conglomeratus). During field surveys it was evident that this habitat was visually

different to the surrounding grassland, with dark green rush plants forming dense clumps.

There have been a number of previous studies that have highlighted the high vegetation index

values associated with Juncus rush habitats [46–47], reflecting the results observed in this

report.

As analysis progressed beyond simple habitat assessment, to community level investiga-

tion, only three of the six vegetation indices (NDVI, GDVI, ENDVI) were able to identify

specific differences between the NVC communities present at the study site (MG5c unim-

proved grassland, MG6b improved grassland, and M23 rush pasture) above the 95% thresh-

old confidence level. The same general patterns of reflectance were evident at the community

level with higher index values produced from the rush pasture than those of the grassland

communities.

The ENDVI was the only index that was able to separate all combinations of communities.

The ENDVI separated the rush pasture (M23) and both grassland communities (MG5c:

P<0.001; MG6b: P = 0.011); whilst contemporaneously distinguishing between unimproved

(MG5c) and improved (MG6b) grassland communities (P = 0.012). MG5c communities were

consistently shown to present lower index values than the improved MG6b communities. In

terms of the nature of the ENDVI index, the spectral reflectance data showed that both com-

munities presented similar ‘difference values’ between the NIR+green and blue bands. How-

ever, the comparative increase in the ‘total amount of energy’ reflected by unimproved

grassland across the three available bands enabled the two communities to be separated within

the imagery. The distinction in the reflectance properties of these two communities may, in

part, be a result of the significant differences present in the abundance of wildflower species

(MG5c = 10.5, MG6b = 4.2) and the higher abundance of grass species (mean species number:

MG5c = 3.6, MG6b = 4.8).

The unimproved (MG5c) grassland in field A had the lowest mean number of grass species

(3.3 per quadrat). This increased marginally in field B (3.8 per quadrat), and more substantially

in the improved grassland field C (MG6b; 4.8 per quadrat). The dominance of grasses and lack

Small-Unmanned Aircraft Systems for the rapid detection of unimproved grassland communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0186193 October 12, 2017 12 / 16

https://doi.org/10.1371/journal.pone.0186193


of wildflower species (4.2) within the improved field C directly contrast to the unimproved

fields in which fewer grass species were present and the mean number of wildflowers were

considerably higher (9.9 and 11.1). The differing spectral properties associated with these two

vegetative groups may explain why vegetation index values were different between fields and

community types. It is likely that the reason the ENDVI was the most effective index at distin-

guishing between grassland communities is due to it incorporating three spectral bands (blue,

green and NIR).

This ENDVI index was developed by LDP LLC, Carlstadt, NJ, USA [39] and is proposed as

an improvement to the NDVI in these low flight-height sUAS surveys of grassland communi-

ties. It differs from the other indices tested by incorporating the green, blue and NIR spectral

bands [39]. As stated previously, by summing the NIR and green channels together, the

ENDVI amplifies the chlorophyll reflection of vegetation imagery [12]. More specifically, the

inclusion of the green band is suggested to increase sensitivity to chlorophyll concentrations

[34]. The further inclusion of the blue channel provides a bigger potential response range

resulting from chlorophyll b; increasing the dynamic range of the resultant index values. The

carotenoid concentrations in the grassland species may be another key group, absorbing violet

and blue-green light and functioning as light capture and photo protective pigments. It is pos-

sible that these factors, in particular the increased amplitude of absorption of blue wavelength

energy by chlorophyll b (453nm maximally), and carotenoids (400-500nm maximally) enabled

the ENDVI to provide better discrimination. During this project, the ENDVI was found to be

more effective at distinguishing between improved and unimproved grassland communities,

although further study is required.

The ENDVI has found application in agricultural monitoring [13–14], measuring peatland

disturbance [40] and the management of orchards [12]. As far as known, this project is the

first to apply the ENDVI for the identification of grassland habitats. This project has shown

the effective ENDVI indices calculated from sUAS-acquired imagery can be used to distin-

guish grassland vegetation to a community level. However, further research is needed to refine

the way in which aerial imagery is analysed so that grassland habitats can be more effectively

separated. Future studies within this field should build upon the results of this study, in partic-

ular the potential of the ENDVI for distinguishing between grassland habitats and the identifi-

cation of unimproved fragments. Further research by the authors will focus on investigating

the ability of the ENDVI to identify plant communities and species with known variations of

Chlorophyll a–b and Carotenoid content and seasonal/stress variation. Future research should

also focus on integration and utilisation of narrow-band and ‘red-edge’ spectral band (680-

740mm) to differentiate between habitats, communities and species. The ‘red-edge’ band exists

within the transition zone between the red and NIR regions, representing the boundary

between chlorophyll absorption and scattering by internal leaf structure [48]. Vegetation indi-

ces that incorporate the red-edge band have been shown to more accurately estimate green leaf

area index (LAI) than the traditional NDVI [5]. These indices have the potential to distinguish

between similar vegetation communities and their effectiveness for this application should be

explored in future research.

Supporting information

S1 Fig. Visible spectrum (RGB) aerial image of study site target analysis area located at

Upper Spoods Farm, Hadlow Down, East Sussex. Fields A and B = MG5c unimproved grass-

land, field C = MG6b improved grassland.

(TIF)
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S1 Table. A summary of mean species values, standard deviation (S.D.) and 95% confi-

dence intervals (CI) for the vegetation survey data.
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S2 Table. Vegetation index statistics (Min value, max value, mean, standard deviation) for

each of the three habitat communities present within the study site.
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PLOS ONE. 2013; 8(2): e54700. https://doi.org/10.1371/journal.pone.0054700 PMID: 23405088

10. Sarda-palomera F, Bota G, Vinolo C, Pallares O, Sazatornil V, Brotons L, et al. Fine-scale bird monitor-

ing from light unmanned aircraft systems. Ibis. 2012; 154(1): 177–183.

11. Hunt ER, Hively WD, Fujikawa SJ, Linden DS, Daughtry CS, McCarty GW. Acquisition of NIR-green-

blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010; 2(1): 290–

305.

12. Bulanon DM, Lonai J, Skovgard H, Fallahi E. Evaluation of Different Irrigation Methods for an Apple

Orchard Using an Aerial Imaging System. ISPRS Int J of Geo-Inf. 2016; 5(6): 79.

13. Erena M, Montesinos S, Portillo D, Alvarez J, Marin C, Fernandez L, et al. Configuration and Specifica-

tions of an Unmanned Aerial Vehicle for Precision Agriculture. ISPRS-Int Arch Pho, Remote Sens Spa-

tial Info Sci. 2016; 809–816.

14. Rasmussen J, Ntakos G, Nielsen J, Svensgaard J, Poulsen RN, Christensen S. Are vegetation indices

derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimen-

tal plots? Eur J of Agron. 2016; 74: 75–92.

15. Ghazal M, Al Khalil Y, Hajjdiab H. UAV-based remote sensing for vegetation cover estimation using

NDVI imagery and level sets method. In: Signal Processing and Information Technology, 2015 IEEE

International Symposium. 2015; 332–337.

16. Cunliffe AM, Brazier RE, Anderson K. Ultra-fine grain landscape-scale quantification of dryland vegeta-

tion structure with drone-acquired structure-from-motion photogrammetry. Remote Sens Environ.

2016; 183: 129–143.

17. Burnside N.G, Smith R.F, Waite S. Recent historical land use change on the South Downs, United King-

dom. Enviro Cons. 2003; 30(01): 52–60.

18. Joyce C, Burnside N. Baltic coastal wetlands: back from the brink?. Nat Wet New. 2004; 26(1): 11–15.

19. Alard D, Dorland E, Dupre C, Stevens C, Gaudnik C, Corcket E, et al. Impact of nitrogen deposition on

species richness of calcareous grasslands in Europe-some preliminary results. Nitro Dep and Natura

2000. 2001; 154.

20. Ridding LE, Redhead JW, Pywell RF. Fate of semi-natural grassland in England between 1960 and

2013: A test of national conservation policy. Glob Eco and Cons. 2015; 4: 516–525.

21. Critchley CNR, Burke MJW, Stevens DP. Conservation of lowland semi-natural grasslands in the UK: a

review of botanical monitoring results from agri-environment schemes. Bio Conser. 2003; 115(2): 263–

278.

22. Price EAC. Lowland grassland and heathland habitats. London: Routledge; 2003.

23. Redhead JW, Sheail J, Bullock JM, Ferreruela A, Walker KJ, Pywell RF. The natural regeneration of cal-

careous grassland at a landscape scale: 150 years of plant community re-assembly on Salisbury Plain,

UK. App Veg Sci. 2014; 17(3): 408–418.

24. McGovern S, Evans CD, Dennis P, Walmsley C, McDonald MA. Identifying drivers of species composi-

tional change in a semi-natural upland grassland over a 40-year period. J Veg Sci. 2011; 22(2): 346–

356.

25. High Weald AONB Joint Advisory Committee. The High Weald Area of Outstanding Natural Beauty

Management Plan 2014–2019. High Weald AONB Joint Advisory Committee; 2014.

26. Rouse J Jr, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the Great Plains with

ERTS. NASA special publication. 1974; 351: 309.

27. Ding M, Zhang Y, Liu L, Zhang W, Wang Z, Bai W. The relationship between NDVI and precipitation on

the Tibetan Plateau. J Geogr Sci. 2007; 17(3): 259–268.

28. Kumar P, Rani M, Pandey PC, Majumdar A, Nathawat MS. Monitoring of deforestation and forest deg-

radation using remote sensing and GIS: A case study of Ranchi in Jharkhand (India). Rep opin. 2010; 2

(4): 55–67.

29. Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the Canadian Prairies using

MODIS NDVI data. Agric Forest Meteorol. 2011; 151(3): 385–393.

30. Pettorelli N. The normalized difference vegetation index. Oxford University Press; 2013.

31. Sruthi S, Aslam MM. Agricultural drought analysis using the NDVI and land surface temperature data; a

case study of Raichur district. Aqua Proc. 2015; 4: 1258–1264.

Small-Unmanned Aircraft Systems for the rapid detection of unimproved grassland communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0186193 October 12, 2017 15 / 16

https://doi.org/10.1371/journal.pone.0079556
http://www.ncbi.nlm.nih.gov/pubmed/24223967
https://doi.org/10.1371/journal.pone.0054700
http://www.ncbi.nlm.nih.gov/pubmed/23405088
https://doi.org/10.1371/journal.pone.0186193


32. Vicente-Serrano SM, Cuadrat-Prats JM, Romo A. Early prediction of crop production using drought indi-

ces at different time-scales and remote sensing data: application in the Ebro Valley (north-east Spain).

Int. J. Remote Sens. 2006; 27(3): 511–518.

33. Smith AM, Coupland G, Dolan L, Harberd N, Jones J, Martin C, et al. Plant Biology. Abingdon: Garland

Science; 2010.

34. Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation

from EOS-MODIS. Remote Sens Environ. 1996; 58(3): 289–298.

35. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens

Environ. 1979; 8(2): 127–150.

36. Sripada RP, Heiniger RW, White JG, Meijer AD. Aerial color infrared photography for determining early

in-season nitrogen requirements in corn. Agron J. 2006; 98: 968–977.

37. Birth GS, McVey GR. Measuring the color of growing turf with a reflectance spectrophotometer. Agron

J. 1968; 60(6): 640–643.

38. Crippen RE. Calculating the vegetation index faster. Remote Sens Environ. 1990; 34(1): 71–73.

39. Maxmax. ENDVI. 2015. http://www.maxmax.com/endvi.htm

40. McCann CN. Utilizing Ground Level Remote Sensing to Monitor Peatland Disturbance. Doctoral Disser-

tation, McMaster University. 2016. https://macsphere.mcmaster.ca/handle/11375/20271

41. Harris RB. The Making of the High Weald: Informing the High Weald AONB Management Plan 2004.

High Weald AONB Joint Advisory Committee. 2003.

42. Rodwell JS. British Plant Communities Vol. 1. Woodlands. Cambridge University Press; 1990.

43. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. ‘Structure-from-Motion’photogram-

metry: A low-cost, effective tool for geoscience applications. Geomorphology. 2012; 179: 300–314.

44. Agisoft. Agisoft PhotoScan User Manual: Professional Edition Version 1.2. 2016. http://www.agisoft.

com/pdf/photoscan-pro_1_2_en.pdf

45. Tonkin TN, Midgley NG, Graham DJ, Labadz JC. The potential of small unmanned aircraft systems and

structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal,

North Wales. Geomorphology. 2014; 226: 35–43.

46. Paruelo JM, Golluscio RA. Range assessment using remote sensing in Northwest Patagonia (Argen-

tina). J Range Manage. 1994; 47: 498–502.

47. Ramsey EW, Sapkota SK, Barnes FG, Nelson GA. Monitoring the recovery of Juncus roemerianus

marsh burns with the normalized difference vegetation index and Landsat Thematic Mapper data. Wetl

Ecol Manage. 2002; 10(1): 85–96.

48. Schuster C, Förster M, Kleinschmit B. Testing the red edge channel for improving land-use classifica-

tions based on high-resolution multi-spectral satellite data. Int J Remote Sens. 2012; 33(17): 5583–

5599

Small-Unmanned Aircraft Systems for the rapid detection of unimproved grassland communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0186193 October 12, 2017 16 / 16

http://www.maxmax.com/endvi.htm
https://macsphere.mcmaster.ca/handle/11375/20271
http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf
http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf
https://doi.org/10.1371/journal.pone.0186193

